Density and Viscosity for a Binary Mixture of *cis*-3-Hexenyl Formate, Butyl Acetate, *trans*-2-Hexenyl Acetate, and *cis*-3-Hexenyl Acetate with Ethanol at Several Temperatures

Hiannie Djojoputro and Suryadi Ismadji*

Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia

The density and viscosity of binary mixtures *cis*-3-hexenyl formate (1) + ethanol (2), butyl acetate (1) + ethanol (2), *trans*-2-hexenyl acetate (1) + ethanol (2), and *cis*-3-hexenyl acetate (1) + ethanol (2) over the whole range of composition have been measured at three different temperatures (293.15 K, 303.15 K, and 313.15 K). The excess molar volume and viscosity deviation of these systems were also calculated, and the results were fitted to a well-known Redlich–Kister-type polynomial equation.

Introduction

In the flavor and fragrance industries, aliphatic and acrylic esters are important materials in manufacturing processes.¹ Most of the esters used here are acetates, whereas ethanol is the most common alcohol component. In addition to straight-chain saturated compounds, branched-chain compounds and unsaturated esters are also important within these industries.

Studies of the thermodynamic behavior and physical properties of several esters in their binary mixtures have been performed, including ethyl valerate and hexyl acetate with 1-pentanol and 1-hexanol;¹ benzyl acetate, 2-ethylhexyl acetate, benzaldehyde, and pentyl acetate with 1-butanol and 1-pentanol;² methyl propanoate, methyl butanoate, ethyl propanoate, and ethyl butanoate with several hydrocarbon solvents;3 ethyl acetate with several alcohols;⁴ methyl butanoate with n-heptane, cyclooctane, *n*-octane, and 1-octanol; 5^{-7} ethyl acetate with aromatic hydrocarbons, alcohols, and water;8-11 isopropyl acetate with an aromatic hydrocarbon;¹² acrylic esters with alcohols;^{13,14} butyl acetate and ethyl propionate with methanol and water.¹⁵ However, investigations of the physical properties of cis-3-hexenyl formate, butyl acetate, trans-2hexenyl acetate, and cis-3-hexenyl acetate in a binary mixture with alcohol, especially ethanol, over a wide range of temperatures and compositions are still scarce and not available in the literature. Therefore, this study was undertaken to obtain reliable density and viscosity data for binary mixtures of these esters at 293.15 K, 303.15 K, and 313.15 K.

Experimental Section

Materials. High-purity and AR-grade samples of ethanol, *cis*-3-hexenyl formate, butyl acetate, *trans*-2-hexenyl acetate, and *cis*-3-hexenyl acetate were purchased from Sigma-Aldrich Singapore. The purity of these chemicals was analyzed by gas chromatography (Shimadzu, GC-17A) using a flame ionization detector with a DB-5 column. Helium (high purity) was used as the carrier gas. The purity of these esters is 97.4% for *cis*-3-hexenyl formate,

* Corresponding author. E-mail: suryadi@mail.wima.ac.id. Tel: 62 31 3891264. Fax: 62 31 3891267.

Table 1. Comparison of the Experimental Density and
Viscosity of Pure Compounds with Literature Values at
293.15 K, 303.15 K, and 313.15 K

		$ ho_{ m L}/ m g$	$ ho_{ m L}/ m g{ extsf{\cdot}} m cm^{-3}$		nPa•s
compound	<i>T</i> /K	exptl	lit	exptl	lit
cis-3-hexenyl formate	293.15 303.15 313.15	$\begin{array}{c} 0.90915 \\ 0.90660 \\ 0.90317 \end{array}$		$0.599 \\ 0.527 \\ 0.469$	
butyl acetate	293.15 303.15 313.15	$\begin{array}{c} 0.88104 \\ 0.87130 \\ 0.86184 \end{array}$	0.87120^{15}	$\begin{array}{c} 0.732 \\ 0.628 \\ 0.546 \end{array}$	0.631^{15}
trans-2-hexenyl acetate	293.15 303.15 313.15	$\begin{array}{c} 0.89784 \\ 0.89178 \\ 0.88435 \end{array}$	0.89800 ¹⁶	$\begin{array}{c} 0.901 \\ 0.770 \\ 0.666 \end{array}$	
cis-3-hexenyl acetate	293.15 303.15 313.15	$\begin{array}{c} 0.90082 \\ 0.89314 \\ 0.88619 \end{array}$		$\begin{array}{c} 0.893 \\ 0.763 \\ 0.660 \end{array}$	
ethanol	293.15 303.15	$0.78824 \\ 0.78073$	0.78080^{17} 0.78068^{18}	$\begin{array}{c} 1.160\\ 0.968\end{array}$	0.995^{17} 0.987^{18}
	313.15	0.77198	0.77213^{18}	0.810	0.814^{18}

99.7% for butyl acetate, and 98.9% for *trans*-2-hexenyl acetate and *cis*-3-hexenyl acetate. These esters were used without any further purification.

The binary mixture samples were prepared by mass in airtight-stoppered glass bottles using a Mettler Toledo AE 240 balance with an uncertainty of $\pm 10^{-5}$ g. The uncertainty of the mole fraction for each binary mixture is less than 0.0001.

Density Measurements. Measurements of the densities of the pure components and the binary mixtures were carried out using a Mettler Toledo density meter type DE50 with an uncertainty of about 10^{-5} g·cm⁻³. Prior to measurement, the instrument was calibrated with double-distilled water at 293.15 K, 303.15 K, and 313.15 K. The temperature of the measuring cell was maintained at 293.15 K, 303.15 K, and 313.15 K using a Julabo refriger-ated and heating circulator (model F12-MD with an uncertainty of 0.1 K).

Viscosity Measurements. For the viscosity measurement, an Anton Paar type AMV_n automatic microviscosimeter equipped with an automatic timer (±0.01 s), was used. This instrument uses the rolling ball principle

Table 2. Experimental Density and Viscosity and Excess Molar Volume for Binary Mixtures of cis-3-Hexenyl Form	ate
(1) + Ethanol (2) at 293.15 K, 303.15 K, and 323.15 K	

x_1	$ ho_{ m L}/ m g\cdot cm^{-3}$	$\eta_{\rm I}/{\rm mPa}\cdot{\rm s}$	V ^E /cm ³ ⋅mol ⁻¹	<i>x</i> ₁	$ ho_{ m I}/ m g{f \cdot} m cm^{-3}$	$\eta_{\rm I}/{\rm mPa}\cdot{\rm s}$	$V^{\text{E}/\text{cm}^3 \cdot \text{mol}^{-1}}$
1	120	12	000	-	120	12	
				.15 K			
0.0000	0.78824	1.160	0.000	0.6058	0.86100	0.777	2.829
0.1054	0.80153	1.082	1.128	0.7254	0.87536	0.718	2.350
0.2078	0.81241	1.011	2.111	0.8007	0.88120	0.683	2.352
0.2987	0.82436	0.952	2.535	0.9154	0.89612	0.633	1.281
0.4015	0.83245	0.889	3.357	1.0000	0.90915	0.599	0.000
0.5143	0.84925	0.825	3.075				
			303.	.15 K			
0.0000	0.78073	0.968	0.000	0.5980	0.85600	0.672	2.912
0.1036	0.79124	0.908	1.433	0.7058	0.87019	0.630	2.390
0.2154	0.80253	0.849	2.691	0.8205	0.88401	0.587	1.727
0.3087	0.82054	0.802	2.598	0.9014	0.89628	0.559	0.717
0.4221	0.83345	0.748	3.080	1.0000	0.90660	0.527	0.000
0.5231	0.84614	0.704	3.109				
			313.	.15 K			
0.0000	0.77198	0.810	0.000	0.6078	0.85009	0.581	3.235
0.0984	0.78051	0.767	1.606	0.7145	0.86572	0.548	2.541
0.1895	0.80042	0.730	1.734	0.8154	0.87804	0.518	1.981
0.3122	0.81294	0.682	2.849	0.9089	0.89122	0.492	1.002
0.4087	0.82543	0.647	3.177	1.0000	0.90317	0.469	0.000
0.5041	0.83922	0.614	3.080				

Table 3. Experimental Density and Viscosity and Excess Molar Volume for Binary Mixtures of Butyl Acetate (1) + Ethanol (2) at 293.15 K, 303.15 K, and 323.15 K

<i>x</i> ₁	$ ho_{ m L}/ m g\cdot cm^{-3}$	$\eta_{\rm L}/{\rm mPa}\cdot{\rm s}$	$V^{\mathrm{E}}/\mathrm{cm}^{3}\cdot\mathrm{mol}^{-1}$	x_1	$ ho_{ m L}/ m g{f \cdot} m cm^{-3}$	$\eta_{\rm I}/{\rm mPa}\cdot{\rm s}$	V^{E} /cm ³ ·mol ⁻¹
			293.	.15 K			
0.0000	0.78824	1.160	0.000	0.6123	0.84601	0.875	1.795
0.1135	0.79954	1.100	0.793	0.7008	0.85217	0.840	1.818
0.2054	0.80563	1.055	1.532	0.8054	0.86304	0.800	1.229
0.3078	0.81547	1.006	1.912	0.9127	0.87294	0.762	0.622
0.4122	0.82914	0.959	1.707	1.0000	0.88104	0.732	0.000
0.5191	0.83641	0.913	2.033				
			303.	.15 K			
0.0000	0.78073	0.968	0.000	0.6015	0.83468	0.746	1.998
0.1082	0.79150	0.923	0.738	0.7028	0.84462	0.714	1.633
0.2006	0.79954	0.887	1.291	0.8043	0.85358	0.683	1.240
0.3121	0.80754	0.845	1.938	0.9074	0.86291	0.653	0.656
0.4018	0.81714	0.806	1.989	1.0000	0.87130	0.628	0.000
0.5213	0.82793	0.779	2.091				
			313.	.15 K			
0.0000	0.77198	0.810	0.000	0.6091	0.82934	0.637	1.604
0.1051	0.78051	0.777	0.892	0.7053	0.83536	0.613	1.679
0.1988	0.78751	0.748	1.586	0.8144	0.84516	0.587	1.207
0.3047	0.79906	0.718	1.820	0.9058	0.85773	0.566	0.023
0.4038	0.80827	0.690	2.010	1.0000	0.86184	0.546	0.000
0.5088	0.81770	0.662	2.063				

according to DIN 53015 and ISO/DIS 12058, where goldcovered steel balls roll down inside an inclined, samplefilled glass capillary. The uncertainty of time in the range of (0 to 250) s is less than 0.02 s with a resolution of ± 0.01 s. The temperature range of this viscosimeter is from (283.15 to 343.15) K with an uncertainty of less than 0.05 K. The calibration of the instrument was performed periodically with double-distilled water. The uncertainty in the viscosity measurement was estimated to be better than 0.004 mPa·s. The measuring temperature was kept at 293.15 K, 303.15 K, and 313.15 K by placing the samplefilled glass capillary in a block controlled by a Julabo refrigerated and heating circulator.

All measurements described above were performed at least three times, and the results were averaged to give the final values.

Results and Discussion

Table 1 summarizes the experimental results of the density and viscosity of the pure liquid and compares these results to those from the literatures. The experimental values are generally in agreement with those available in the literature.^{15–18} The density and viscosity of binary mixtures of *cis*-3-hexenyl formate (1) + ethanol (2), butyl acetate (1) + ethanol (2), *trans*-2-hexenyl acetate (1) + ethanol (2), and *cis*-3-hexenyl acetate (1) + ethanol (2) obtained in this study at three different temperatures are given in Tables 3–6.

The excess molar volume, V^{E} , and viscosity deviation, $\Delta \eta$, were calculated from density and viscosity measurements according to the following equations¹⁻⁴

$$V^{\rm E} = \frac{x_1 M_1 + x_2 M_2}{\rho_{\rm L}} - (x_1 V_1 + x_2 V_2) \tag{1}$$

and

$$\Delta \eta = \eta_{\rm L} - x_1 \eta_{\rm p1} - x_2 \eta_{\rm p2} \tag{2}$$

Here, $\rho_{\rm L}$ is the density of the mixture, and x_1 , V_1 , M_1 , x_2 , V_2 , and M_2 are the mole fraction, molar volume, and molecular weight of pure components 1 and 2, respectively.

Table 4. Experimental Density and Viscosity and Excess Molar Volume for Binary Mixtures of *trans*-2-Hexenyl Acetate (1) + Ethanol (2) at 293.15 K, 303.15 K, and 323.15 K

x_1	$ ho_{ m L}/ m g\cdot cm^{-3}$	$\eta_{\rm L}/{\rm mPa}\cdot{\rm s}$	$V^{\mathrm{E}}/\mathrm{cm}^{3}\cdot\mathrm{mol}^{-1}$	x_1	$ ho_{ m L}/ m g\cdot cm^{-3}$	$\eta_{\rm I}/{\rm mPa}\cdot{\rm s}$	V^{E} /cm ³ ·mol ⁻¹
			293.	.15 K			
0.0000	0.78824	1.160	0.000	0.5906	0.85297	0.999	3.105
0.1022	0.79752	1.130	1.426	0.7123	0.86791	0.968	2.347
0.2074	0.81097	1.100	2.220	0.8146	0.87752	0.944	1.885
0.3158	0.82430	1.071	2.713	0.9057	0.88516	0.922	1.451
0.4125	0.83345	1.045	3.185	1.0000	0.89784	0.901	0.000
0.4987	0.84290	1.022	3.248				
			303.	.15 K			
0.0000	0.78073	0.968	0.000	0.6006	0.84743	0.843	3.157
0.1046	0.79235	0.945	1.318	0.7028	0.85878	0.824	2.712
0.2158	0.80469	0.921	2.346	0.8069	0.87034	0.804	1.996
0.3047	0.81457	0.902	2.901	0.9123	0.88204	0.785	1.012
0.4061	0.82583	0.882	3.257	1.0000	0.89178	0.770	0.000
0.5087	0.83722	0.861	3.330				
			313.	.15 K			
0.0000	0.77198	0.810	0.000	0.6052	0.83999	0.719	3.232
0.1014	0.78025	0.794	1.607	0.7142	0.85223	0.704	2.722
0.2083	0.79614	0.777	2.277	0.8059	0.86049	0.691	2.402
0.3056	0.80632	0.762	2.990	0.9041	0.87259	0.678	1.299
0.4009	0.81493	0.748	3.607	1.0000	0.88435	0.666	0.000
0.5017	0.82936	0.734	3.291				

Table 5. Experimental Density and Viscosity and Excess Molar Volume for Binary Mixtures of *cis*-3-Hexenyl Acetate (1) + Ethanol (2) at 293.15 K, 303.15 K, and 323.15 K

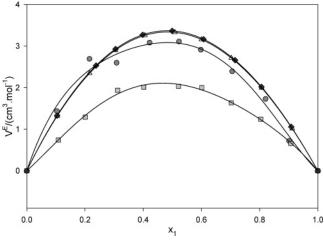
<i>x</i> ₁	$ ho_{ m L}/ m g\cdot cm^{-3}$	$\eta_{\rm L}/{\rm mPa}\cdot{\rm s}$	$V^{\mathrm{E}}/\mathrm{cm}^{3}\cdot\mathrm{mol}^{-1}$	x_1	$ ho_{ m L}/ m g\cdot cm^{-3}$	$\eta_{\rm L}/{\rm mPa}\cdot{\rm s}$	V^{E} /cm ³ ·mol ⁻¹
			293	.15 K			
0.0000	0.78824	1.160	0.000	0.6047	0.85140	0.990	3.827
0.0987	0.79726	1.130	1.428	0.7063	0.86776	0.964	2.675
0.1788	0.80934	1.106	1.939	0.8159	0.88293	0.937	1.456
0.3041	0.82451	1.071	2.654	0.9178	0.89045	0.912	1.136
0.4058	0.83159	1.043	3.522	1.0000	0.90082	0.893	0.000
0.5071	0.84752	1.015	3.019				
			303	.15 K			
0.0000	0.78073	0.968	0.000	0.6074	0.84901	0.837	3.163
0.1043	0.79245	0.944	1.328	0.7159	0.86120	0.816	2.661
0.2381	0.80749	0.914	2.531	0.8064	0.87138	0.798	2.018
0.3048	0.81499	0.900	2.929	0.9088	0.88289	0.779	1.057
0.3981	0.82548	0.880	3.270	1.0000	0.89314	0.763	0.000
0.4995	0.83688	0.859	3.365				
			313	.15 K			
0.0000	0.77198	0.810	0.000	0.6188	0.84059	0.713	3.530
0.0988	0.78056	0.793	1.554	0.7059	0.85439	0.700	2.523
0.2047	0.79851	0.776	2.030	0.8064	0.86140	0.686	2.525
0.3058	0.80720	0.760	2.994	0.9056	0.87541	0.672	1.124
0.4085	0.81936	0.745	3.305	1.0000	0.88619	0.660	0.000
0.5096	0.83256	0.729	3.138				

The terms $\eta_{\rm L}$, $\eta_{\rm p1}$, and $\eta_{\rm p2}$ in eq 2 are the viscosity of the binary mixture viscosity of pure components 1 and 2, respectively.

The calculated excess molar volumes for the given binary systems are also summarized in Tables 2–5. From these Tables, it can be seen that the excess molar volumes for all mixtures are positive. The positive $V^{\rm E}$ values are due to several factors such as the declustering of ethanol in the presence of ester^{1,4} and repulsive forces due to the electronic charges of both components and more domination of steric hindrance in the ester molecules. The results of the excess molar volume, $V^{\rm E}$, as a function of the mole fraction of component 1, x_1 , of the ester + ethanol systems at 303.15 are depicted in Figure 1. In this Figure, the calculated excess molar volumes, $V^{\rm E}$, for various systems are represented by symbols, whereas the solid lines represent the well-known Redlich–Kister polynomial equation for excess molar volume, $V^{\rm E}$, which has the form

$$V^{\rm E} = x_1 x_2 \sum_{i=0}^{n} A_i (x_1 - x_2)^i \tag{3}$$

where A_i represents the parameters of the Redlich–Kister polynomial equation and those obtained from the leastsquares method. The parameters of the Redlich–Kister polynomial equation for excess molar volume V^{E} are given in Table 6.


The experimental values of viscosity listed in Tables 2–5 were used to calculate viscosity deviations using eq 2. The viscosity deviations of *cis*-3-hexenyl formate (1) + ethanol (2), butyl acetate (1) + ethanol (2), *trans*-2-hexenyl acetate (1) + ethanol (2), and *cis*-3-hexenyl acetate (1) + ethanol (2) at 293.15 are presented in Figure 2 with the minimum point located near $x_1 \approx 0.55$. In this Figure, the viscosity deviations, $\Delta \eta$, for various systems are represented by symbols, and the solid lines represent the well-known Redlich-Kister polynomial equation for the viscosity deviation, which has the following form:

$$\Delta \eta = x_1 x_2 \sum_{i=0}^{n} A_i (x_1 - x_2)^i \tag{4}$$

The parameters A_i of eq 4 obtained by the least-squares

Table 6. Parameter and Standard Deviations of the
Redlich-Kister Polynomial Equation for Selected Ester
+ Ethanol Systems

	<i>T</i> /K	$A_{ m o}$	A_1	A_2	A_3	σ
ci	is-3-Hexe	enyl Forn	nate (1) +	Ethanol	(2)	
$V^{\text{E}/\text{cm}^{3} \cdot \text{mol}^{-1}}$	293.15	12.414	-2.696	2.150	9.645	0.007
	303.15	12.322	-0.706	1.373	-6.384	0.006
	313.15	12.823	1.248	0.971	-4.872	0.010
$\Delta \eta/mPa \cdot s$	293.15	-0.186	0.0223	0.000	-0.009	0.001
	303.15	-0.135	0.012	0.006	-0.003	0.000
	313.15	-0.095	0.015	-0.006	-0.018	0.000
	Butyl	Acetate	(1) + Etha	anol (2)		
$V^{\text{E}/\text{cm}^3 \cdot \text{mol}^{-1}}$	293.15	7.884	-0.284	1.514	-0.680	0.013
	303.15	8.388	-1.263	-0.962	2.374	0.003
	313.15	8.133	-0.378	-0.887	-6.025	0.024
$\Delta \eta/mPa \cdot s$	293.15	-0.099	0.009	-0.006	0.002	0.000
,	303.15	-0.074	0.008	-0.010	-0.004	0.000
	313.15	-0.054	0.008	-0.004	-0.012	0.001
trooption transfer	ans-2-He	xenyl Ac	etate (1) +	- Ethanol	(2)	
$V^{\text{E}}/\text{cm}^3 \cdot \text{mol}^{-1}$	293.15	12.531	-1.870	2.529	3.286	0.008
	303.15	13.337	-0.892	0.055	0.008	0.000
	313.15	13.596	-1.019	3.222	1.316	0.006
$\Delta \eta/mPa \cdot s$	293.15	-0.034	-0.001	-0.007	0.005	0.004
	303.15	-0.025	0.002	-0.004	-0.008	0.005
	313.15	-0.016	0.006	-0.005	-0.015	0.004
с	is-3-Hex	enyl Acet	tate(1) + 1	Ethanol (2)	
$V^{\text{E}}/\text{cm}^3 \cdot \text{mol}^{-1}$	293.15	13.741	1.219	-2.056	-5.878	0.026
	303.15	13.459	-0.906	0.062	-0.005	0.000
	313.15	13.330	1.118	2.603	-2.806	0.016
$\Delta \eta/mPa \cdot s$	293.15	-0.036	0.002	-0.004	0.004	0.003
	303.15	-0.026	0.009	-0.006	-0.005	0.002
	313.15	-0.017	-0.002	-0.011	0.004	0.009

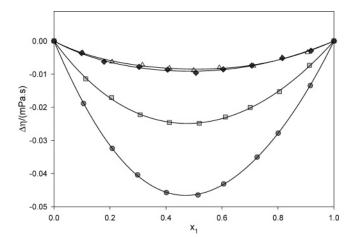


Figure 1. Excess molar volume V^{E} of the binary mixtures studied at 303.15 K for \bullet , *cis*-3-hexenyl formate (1) + ethanol (2); \blacksquare , butyl acetate (1) + ethanol (2); \blacktriangle , *trans*-2-hexenyl acetate (1) + ethanol (2); and \blacklozenge , *cis*-3-hexenyl acetate (1) + ethanol (2).

method are given in Table 6. From Table 6, that is clear that the Redlich–Kister polynomial equation can represent the excess molar volume and viscosity deviation very well, which is indicated by low standard deviations.

Conclusions

New experimental values of the density and viscosity for mixtures of *cis*-3-hexenyl formate (1) + ethanol (2), butyl acetate (1) + ethanol (2), *trans*-2-hexenyl acetate (1) + ethanol (2), and *cis*-3-hexenyl acetate (1) + ethanol (2) were obtained at 293.15 K, 303.15 K, and 313.15 K. From these experimental values, the excess molar volume, $V^{\rm E}$, and viscosity deviation, $\Delta \eta$, were also determined. The excess molar volumes for all mixtures are positive. The excess

Figure 2. Viscosity deviation $\Delta \eta$ of the binary mixtures studied at 293.15 K for \bullet , *cis*-3-hexenyl formate (1) + ethanol (2); \blacksquare , butyl acetate (1) + ethanol (2); \blacktriangle , *trans*-2-hexenyl acetate (1) + ethanol (2); and \blacklozenge , *cis*-3-hexenyl acetate (1) + ethanol (2).

molar volume and viscosity deviation were correlated by the Redlich-Kister polynomial equation, and correlation parameters were obtained.

Literature Cited

- Indraswati, N.; Mudjijati; Wicaksana, F.; Hindarso, H.; Ismadji, S. Density and Viscosity for a Binary Mixture of Ethyl Valerate and Hexyl Acetate with 1-Pentanol and 1-Hexanol at 293.15 K, 303.15 K, and 313.15 K. J. Chem. Eng. Data 2001, 46, 134–137.
- (2) Indraswati, N.; Mudjijati; Wicaksana, F.; Hindarso, H.; Ismadji, S. Measurements of Density and Viscosity of Binary Mixtures of Several Flavor Compounds with 1-Butanol and 1-Pentanol at 293.15 K, 303.15 K, 313.15 K, and 323.15 K. J. Chem. Eng. Data 2001, 46, 696-702.
- (3) Sastry, N. V.; George, A.; Jain, N. J.; Bahadur, P. Densities, Relative Permittivities, Excess Volumes, and Excess Molar Polarization for Alkyl Esters (Methyl Propanoate, Methyl Butanoate, Ethyl Propanoate, and Ethyl Butanoate) + Hydrocarbons (n-Heptane, Benzene, Chlorobenzene, and 1,1,2,2-Tertrachloroethane) at 308.15 K and 318.15 K. J. Chem. Eng. Data 1999, 44, 456-464.
- (4) NiIkam, P. S.; Mahale, T. R.; Hasan, M. Densities and Viscosities for Ethyl Acetate + Pentan-1-ol, + Hexan-1-ol, + 3,5,5-Trimethylhexan-1-ol, + Heptan-1-ol, + Octan-1-ol, and + Decan-1-ol at (298,15, 303.15, and 308.15) K. J. Chem. Eng. Data 1998, 43, 436-440.
- (5) Trenzado, J. L.; Matos, J. S.; Alcade, R. Volumetric properties and viscosities of methyl butanoate + n-heptane + cyclo-octane ternary system at 283.15 and 313.15 K and its binary constituents in the temperature range from 283.15 to 313.15 K. Fluid Phase Equilib. 2002, 200, 295–315.
- (6) Matos, J. S.; Trenzado, J. L.; Gonzalez, E.; Alcade, R. Volumetric properties and viscosities of methyl butanoate + n-heptane + n-octane ternary system and its binary constituents in temperature range from 283.15 to 313.15 K. Fluid Phase Equilib. 2001, 186, 207-234.
- (7) Trenzado, J. L.; Matos, J. S.; Alcalde, R. Volumetric properties and viscosities of methyl butanoate + n-heptane + 1-octanol ternary system and its binary constituents in temperature range from 283.15 to 313.15 K. *Fluid Phase Equilib.* **2003**, 205, 171– 192.
- (8) Resa, J. M.; Gonzales, C.; de Landaluce, S. O.; Lanz, J. Densities, excess molar volumes, and refractive indices of ethyl acetate and aromatic hydrocarbon binary mixtures. J. Chem. Thermodyn. 2002, 34, 995–1004.
- (9) Resa, J. M.; Gonzales, C.; Jues, M.; de Landaluce, S. O. Density, refractive index and speed sound for mixtures of ethyl acetate with 2-butanol and 3-methyl-1-butanol vapor liquid equilibrium of the ethyl acetate + 3-methyl-1-butanol system. *Fluid Phase Equilib.* 2004, 217, 175–180.
- (10) Resa, J. M.; Gonzalez, C.; Goenaga, J. M.; Iglesis, M. Temperature dependence of excess molar volumes of ethanol plus water plus ethyl acetate. J. Solution Chem. 2004, 33, 169–198.
- (11) 11. Resa, J. M.; Gonzalez, C.; Goenaga, J. M.; Iglesias, M. Density, Refractive Index, and Speed of Sound at 298.15 K and Vapor-Liquid Equilibria at 101.3 kPa for Binary Mixtures of Ethyl Acetate + 1-Pentanol and Ethanol + 2-Methyl-1-propanol. J. Chem. Eng. Data 2004, 49, 804-808.

- (12) Resa, J. M.; Gonzales, C.; Diez, E.; Concha, R. G.; Iglesias, M. Mixing properties of isopropyl acetate plus aromatic hydrocarbons at 298.15 K: density, refractive index and isentropic compress-
- at 298.15 K: density, refractive index and isentropic compressibility. Korean J. Chem. Eng. 2004, 21, 1015-1025.
 (13) Sastry, N. V.; Valand, M. K. Thermodynamics of acrylic esterorganic solvent mixtures. V. Viscosities and excess viscosities of alkyl acrylates-1-alcohol binary mixtures at 298.15 and 308.15 K. Int. J. Thermophys. 1997, 18, 1387-1403.
 (14) Sastry, N. V.; Valand, M. K. Volumetric behavior of acrylic esters (methyl-, ethyl-, and butyl acrylate) plus 1-alcohol (heptanol, octanol, decanol, and dodecanol) at 298.15 K and 308.15 K. Phys. Chem. Lin 2000, 38, 61-72.
- (15) Visak, Z. P.; Ferreira, A. G. M.; Fonseca, I. M. A. Densities and Viscosities of the Ternary Mixtures Water + Butyl Acetate + Methanol and Water + Ethyl Propionate + Methanol at 303.15 K. J. Chem. Eng. Data 2000, 45, 926-931.
- (16) Bauer, K.; Garbe, D.; Surburg, H. Common Fragrance and Flavor Materials: Preparation, Properties and Uses, 4th ed.; Wiley-VCH: Weinheim, Germany, 2001. Pan, I. C.; Tang, M.; Chen, Y. P. Densities and Viscosities of Binary Liquid Mixtures of Vinyl Acetate, Diethyl Oxalate, and
- (17)Dibutyl Phthalate with Normal Alkanols at 303.15 K. J. Chem.
- Dibutyi Prinarate with Normal Arkanois at 505.15 K. J. Chem. Eng. Data 2000, 45, 1012–1015.
 (18) Nikam, P. S.; Shirsat, L. N.; Hasan, M. Density and Viscosity Studies of Binary Mixtures of Acetonitrile with Methanol, Etha-nol, Propan-1-ol, Propan-2-ol, Butan-1-ol, 2-methylpropan-1-ol, and 2-Methylpropan-2-ol at (298.15, 303.15, 308.15, and 313.15)
 K. L. Chem. Erg. Data 1009, 42, 729, 727. K. J. Chem. Eng. Data 1998, 43, 732-737.

Received for review January 3, 2005. Accepted March 23, 2005.

JE0500025